

Großdruck

Regeln und Gesetze	
Rechengesetze	Seite 1
Proportionalität	Seite 2
Antiproportionalität	Seite 3
Die binomischen Formeln	Seite 4
Rechnen mit Geschwindigeiten	
Geschwindigkeit (v)	Seite 5
Weg (s)	Seite 5
Zeit (t)	Seite 5
Einheiten für die Geschwindigkeit	Soite 5

Prozentrechnung mit Formel und Dreisatz

Prozentsatz (p%)	Seite 6
Prozentwert (W)	Seite 7
Grundwert (G) = 100 %	Seite 8

Zinsrechnung

Zinsformeln:

Jahreszinsen (Z)	Seite 9
Kapital (K)	Seite 9
Zinssatz (p%)	Seite 9

Zinsen für einen Zeitraum berechnen

Jahreszinsen	Seite 10
Monatszinsen	Seite 10
Tageszinsen	Seite 10

Flächen- und Umfangsberechnung

Dreieck	Seite 11
Lehrsatz des Pythagoras	Seite 12
Viereck	Seite 13
Rechteck	Seite 13
Parallelogramm	Seite 14
Drachenviereck und Raute	Seite 14
Trapez	Seite 15
Kreis	Seite 16
Kreisausschnitt	Seite 16
Kreisring	Seite 16

Volumen- und Oberflächenberechnung

Würfel	Seite 17
Quader	Seite 17
Prisma (Dreicksäule)	Seite 18
Zylinder	Seite 18
Pyramide	Seite 19
Quadratische Pyramide	Seite 20
Kegel	Seite 21
Kugel	Seite 22
Trapezsäule	Seite 22

Maße und Maßeinheiten I

Raummaße	Seite 23
Massen	Seite 24
Zeitspannen	Seite 24
Flächenmaße	Seite 25
Längen	Seite 26
Maßstab	Seite 26

Maße und Maßeinheiten II

Längen, Flächenmaße, Raummaße Seite 27
Raummaße, Massen, Zeitspannen Seite 28

Dichte berechnen

Formeln, Einheiten der Dichte Seite 29

Regeln und Gesetze

Rechengesetze

Vertauschungsgesetz (Kommutativgesetz)

$$15 + 3 = 3 + 15$$

$$15 \bullet 3 = 3 \bullet 15$$

Verbindungsgesetz (Assoziativgesetz)

$$(15+3)+4=15+(3+4)$$

$$(15 \bullet 3) \bullet 4 = 15 \bullet (3 \bullet 4)$$

Klammerrechnung geht vor Potenzrechnung

$$(2+3)^2=5^2=25$$

Klammerrechnung geht vor Punktrechnung

$$5 \cdot (4a - 2a) = 5 \cdot 2a = 10a$$

Potenzrechnung geht vor Punktrechnung

$$2 \cdot 3^2 = 2 \cdot 9 = 18$$

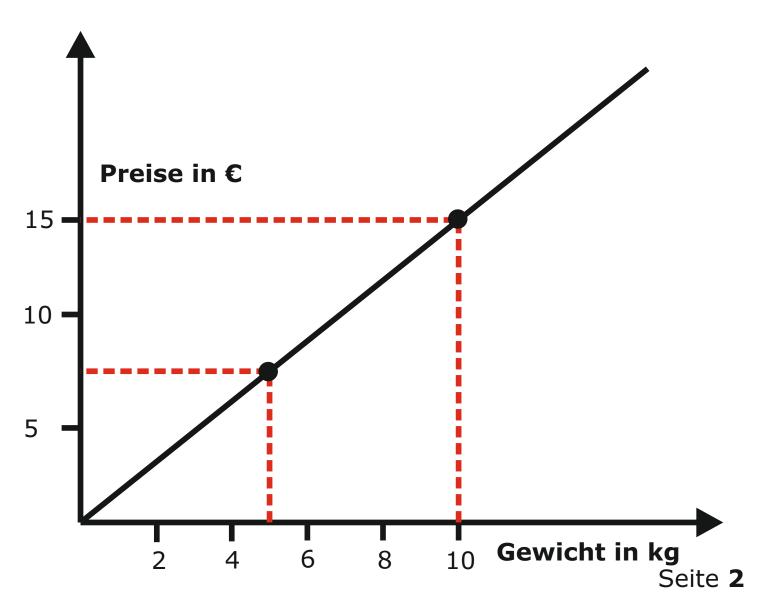
Punktrechnung geht vor Strichrechnung

$$28 - 5 \bullet 3 = 28 - 15 = 13$$

Proportionalität

Verdoppelt sich eine Größe, dann verdoppelt sich auch die andere Größe.

Halbiert sich eine Größe, dann halbiert sich auch die andere Größe.


Beispiel:

Masse und Preis einer Ware:

Wenn 5 kg Kartoffeln 7,50 € kosten, dann kosten 10 kg Kartoffeln 15 €.

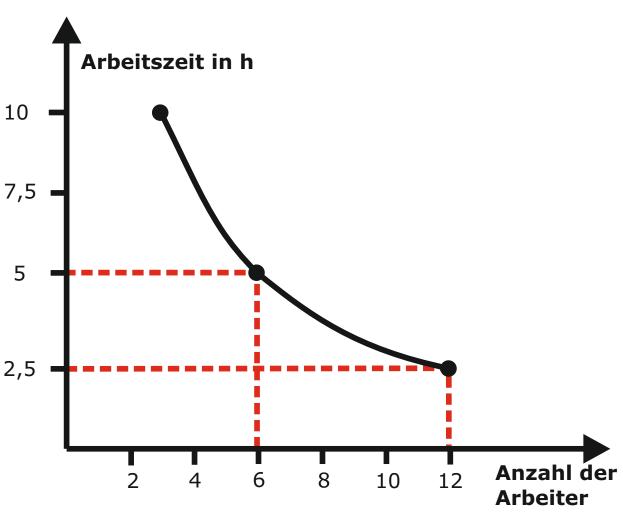
Quotientengleichheit:

7,50:5=1,5 und 15:10=1,5

Verdoppelt sich eine Größe, dann halbiert sich die andere Größe.

Halbiert sich eine Größe, dann verdoppelt sich die andere Größe.

Beispiel:


Anzahl der Arbeiter und Arbeitsdauer:

Bei einem Einsatz von **3 Arbeitern** dauert eine Arbeit **10 Stunden**.

Bei einem Einsatz von 6 Arbeitern dauert eine Arbeit 5 Stunden.

Produktgleichheit:

$$3 \bullet 10 = 30 \text{ und } 6 \bullet 5 = 30$$

Die binomischen Formeln

erste binomische Formel:

$$(a + b)^2 = a^2 + 2ab + b^2$$

zweite binomische Formel:

$$(a - b)^2 = a^2 - 2ab + b^2$$

dritte binomische Formel:

$$(a + b) (a - b) = a^2 - b^2$$

Rechnen mit Geschwindigkeiten

Dividiert man den **Weg s** (zurückgelegte Strecke) durch die **Zeit t** (benötigte Zeit für die zurückgelegte Strecke), so erhält man die **Geschwindigkeit v**

Geschwindigkeit (
$$\mathbf{v}$$
) = $\frac{\text{Weg}}{\text{Zeit}}$

Formel:
$$\mathbf{v} = \frac{s}{t}$$

Weg (s) = Geschwindigkeit • Zeit

Formel:
$$\mathbf{s} = \mathbf{v} \bullet \mathbf{t}$$

Zeit (
$$\mathbf{t}$$
) = $\frac{\text{Weg}}{\text{Geschwindigkeit}}$

Formel:
$$\mathbf{t} = \frac{s}{v}$$

Einheiten für die Geschwindigkeit:

Prozentrechnung mit Formel und Dreisatz

Prozentsatz (p%)

Wie viel Prozent sind 24 Fahrzeuge von 60 Fahrzeugen?

Gegeben: G = 60 Fahrzeuge; W = 24 Fahrzeuge

Gesucht: p%

Formel:
$$p\% = \frac{W \cdot 100}{G}$$
 $p\% = \frac{24 \cdot 100}{60}$
 $p\% = 40$

Antwort: 24 Fahrzeuge sind 40 %.

Fahrzeuge	Prozent
60	100
: 60	± 100 60 : 60 • 24
• 24	$\frac{100}{60}$ • 24 = 40

Die gesuchte Größe steht im Dreisatz immer hinten.

Prozentwert (W)

36 % von 450 abgegebenen Stimmen fielen auf Herrn Sprinz. Wie viele Stimmen sind das?

Gegeben: G = 450 Stimmen; p% = 36

Gesucht: W

Formel:
$$W = \frac{G \cdot p}{100}$$

$$W = \frac{450 \cdot 36}{100}$$

$$W = 162$$

Antwort: Herr Sprinz erhielt 162 Stimmen.

Prozent	Stimmen
100	450
: 100	± 100 100 : 100 • 36
• 36	450 100 • 36 = 162 <

Die gesuchte Größe steht im Dreisatz immer hinten.

Grundwert (G) = 100 %

Bei einer Tombola sollen 20 % aller Lose Gewinne sein. 750 Gewinne stehen zur Verfügung. Wie viele Lose müssen hergestellt werden?

Gegeben: p% = 20; W = 750 Gewinne

Gesucht: G

Formel:
$$G = \frac{W \cdot 100}{p\%}$$

$$G = \frac{750 \cdot 100}{20}$$

$$G = 3750$$

Antwort: Es müssen 3750 Lose hergestellt werden.

Prozent	Lose
20	750
: 20	<u>750</u> ₹ : 20
• 100	$\frac{750}{20}$ • 100 = 3750 <

Die gesuchte Größe steht im Dreisatz immer hinten.

Zinsrechnung

Zinsrechnen ist angewandte Prozentrechnung

Begriffe:

Grundwert → Kapital (**K**)

Prozentsatz → Zinssatz (p%)

Prozentwert → Jahreszinsen (**Z**)

Zinsformeln:

Jahreszinsen (**Z**) =
$$\frac{\text{Kapital (K)} \cdot \text{Zinssatz (p\%)}}{100}$$

Kapital (**K**) =
$$\frac{\text{Jahreszins } (Z) \bullet 100}{\text{Zinssatz } (p\%)}$$

Zinssatz (
$$\mathbf{p}$$
%) = $\frac{\text{Jahreszins }(Z) \cdot 100}{\text{Kapital }(K)}$

Zinsen für einen Zeitraum berechnen

Hinweis:

Je nach Zinsmodell wird das Jahr mit 360 Tagen oder 365/366 Tagen berechnet. Der Monat mit 30 bzw. 31 Tagen (28/29). In der angegebenen Formel wird mit 360 Tagen gerechnent.

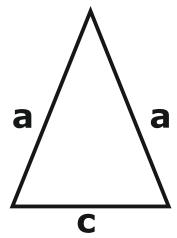
Monatszinsen =
$$\frac{\text{Kapital (K)} \cdot \text{Zinssatz (p\%)} \cdot \text{Monate}}{100 \cdot 12}$$

Tageszinsen =
$$\frac{\text{Kapital (K)} \cdot \text{Zinssatz (p\%)} \cdot \text{Tage}}{100 \cdot 360}$$

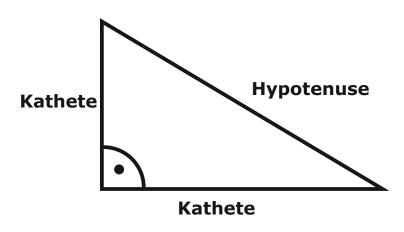
Flächen- und Umfangsberechnung

Dreieck

Umfang: u = a + b + c

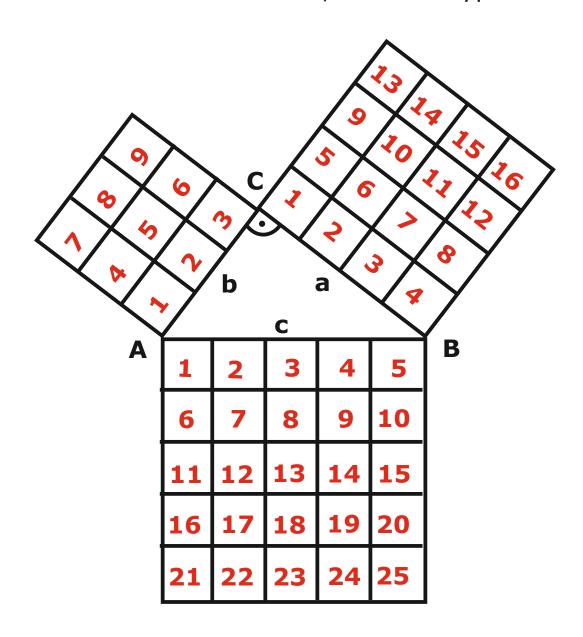

Winkelsumme: $\alpha + \beta + \gamma = 180^{\circ}$

Flächeninhalt: $A = \frac{g \cdot h}{2}$


allgemeines Dreieck

gleichschenkliges Dreieck

rechtwinkliges Dreieck


Die Seite c heißt auch Grundseite g.

Lehrsatz des Pythagoras

In jedem rechtwinkligen Dreieck gilt: Die Quadrate über den Katheten sind zusammen flächengleich zu den Quadraten über der Hypotenuse.

$$a^{2}+b^{2}=c^{2}$$
 $a^{2}=c^{2}-b^{2}$
 $b^{2}=c^{2}-a^{2}$

a und b sind die Katheten, c ist die Hypotenuse

Viereck

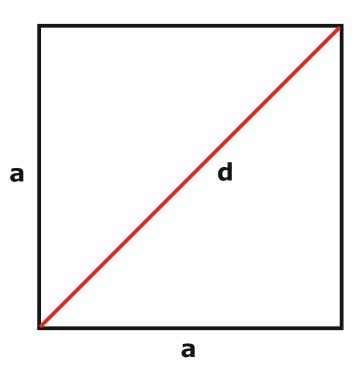
Quadrat

Umfang:

$$u = a + a + a + a$$

 $u = 4 \cdot a$

Flächeninhalt:


$$A = a \cdot a$$

$$A = a^2$$

Flächendiagonale:

$$d = \sqrt{a^2 + a^2}$$

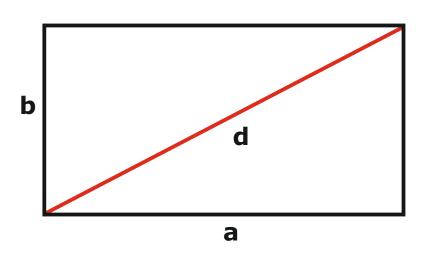
$$\mathbf{d} = \sqrt{2 \cdot a^2}$$

Rechteck

Umfang:

$$u = a + b + a + b$$

 $u = 2 \cdot a + 2 \cdot b$

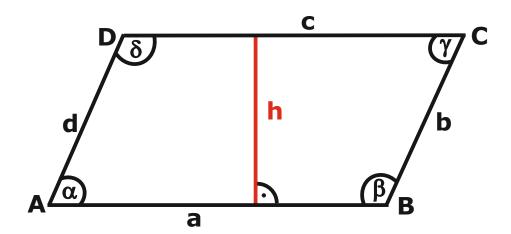

$$u = 2 \cdot (a + b)$$

Flächeninhalt:

$$A = a \cdot b$$

Flächendiagonale:

$$\mathbf{d} = \sqrt{\mathbf{a^2 + b^2}}$$


Parallelogramm

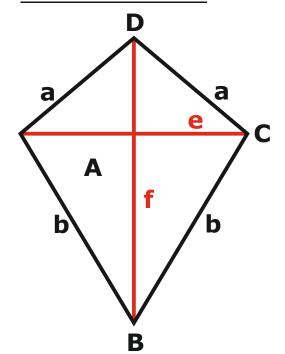
Winkel:

$$\alpha = \gamma$$
 und $\beta = \delta$

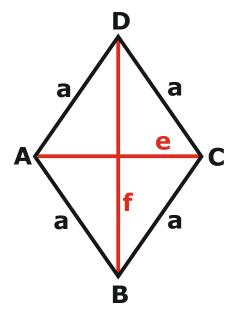
Umfang:

$$\mathbf{u} = 2 \cdot \mathbf{a} + 2 \cdot \mathbf{b}$$

Flächeninhalt:


$$A = a \cdot h$$

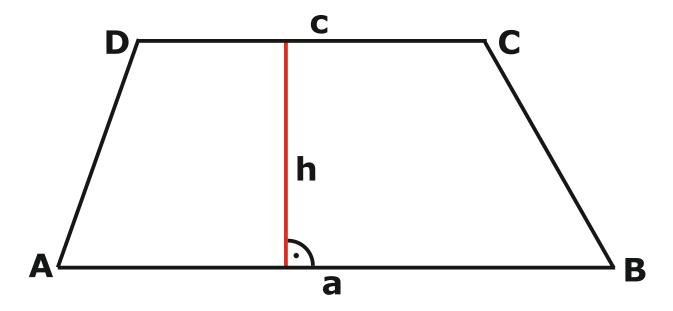
Drachenviereck und Raute


Flächeninhalt:
$$A = \frac{e \cdot f}{2}$$

Im Drachenviereck und in der Raute stehen die Diagonalen aufeinander senkrecht (e⊥f). In der Raute halbieren die Diagonalen einander senkrecht.

Drachenviereck

Raute

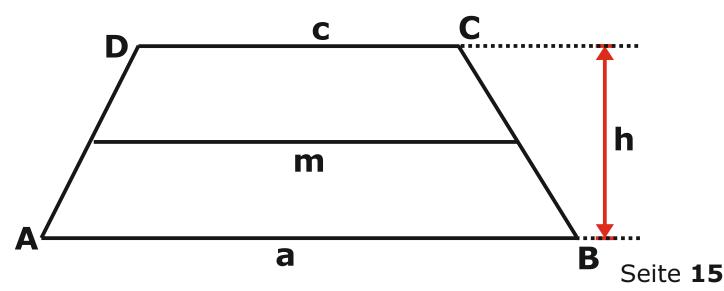


Trapez

Flächeninhalt:

$$\mathbf{A} = \frac{\mathbf{a} + \mathbf{c}}{2} \cdot \mathbf{h}$$

a parallel c (a || c)



Flächeninhalt:

$$A = m \cdot h$$

$$\mathbf{m} = \frac{\mathbf{a} + \mathbf{c}}{2}$$

a parallel c (a || c)

Kreis

Durchmesser: d = 2 • r

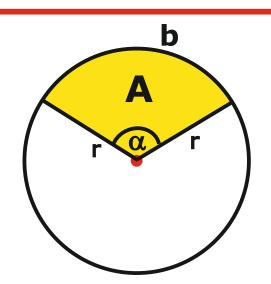

Umfang:
$$u = 2 \cdot r \cdot \pi$$

$$\mathbf{u} = \mathbf{d} \cdot \boldsymbol{\pi}$$

Flächeninhalt:
$$A = r \cdot r \cdot \pi$$

$$\mathbf{A} = \mathbf{r}^2 \cdot \boldsymbol{\pi}$$

$$\pi = 3,14$$


Kreisausschnitt

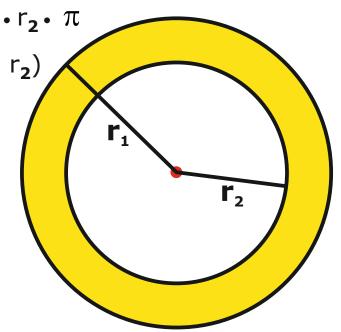
Kreisbogen:
$$b = 2 \cdot r \cdot \pi \cdot \frac{\alpha}{360^{\circ}}$$

Kreissektor:

1. Formel:
$$\mathbf{A} = r^2 \cdot \pi \cdot \frac{\alpha}{360^\circ}$$

2. Formel:
$$\mathbf{A} = \frac{\mathbf{b} \cdot \mathbf{r}}{2}$$

Kreisring

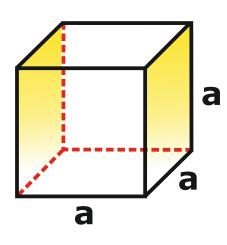

Umfang:
$$\mathbf{u} = 2 \cdot \mathbf{r_1} \cdot \pi + 2 \cdot \mathbf{r_2} \cdot \pi$$

$$\mathbf{u} = 2 \cdot \pi \cdot (\mathbf{r_1} + \mathbf{r_2})$$

Flächeninhalt:

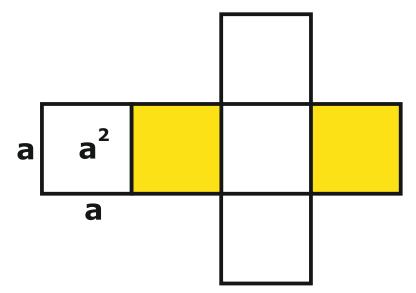
$$\mathbf{A} = \mathbf{r_1} \cdot \mathbf{r_1} \cdot \mathbf{\pi} - \mathbf{r_2} \cdot \mathbf{r_2} \cdot \mathbf{\pi}$$

$$\mathbf{A} = \pi \cdot (\mathbf{r_1} \cdot \mathbf{r_1} - \mathbf{r_2} \cdot \mathbf{r_2})$$



Volumen- und Oberflächenberechnung

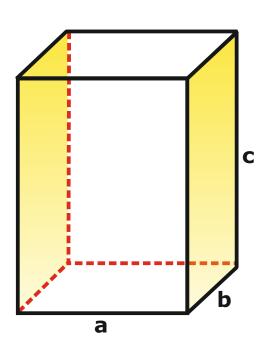
<u>Würfel</u>

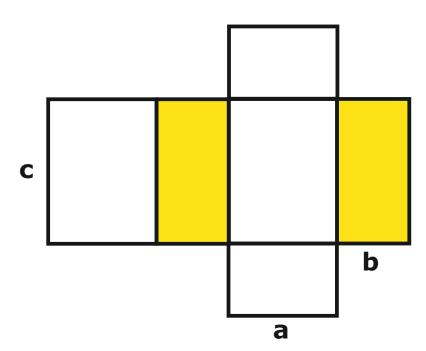

Volumen:

$$V = a^3$$

Oberfläche:

$$\mathbf{0} = 6 \cdot a^2$$

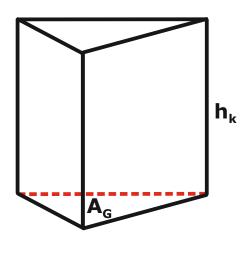

Quader


Volumen:

Oberfläche:

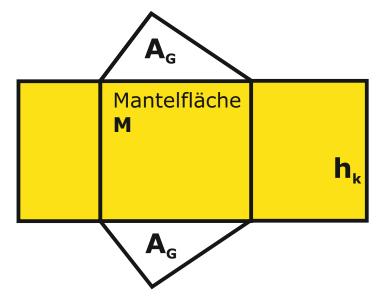
$$\mathbf{O} = 2 \bullet a \bullet b + 2 \bullet a \bullet c + 2 \bullet b \bullet c$$

$$\mathbf{O} = 2 \cdot (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c})$$



Prisma (Dreiecksäule)

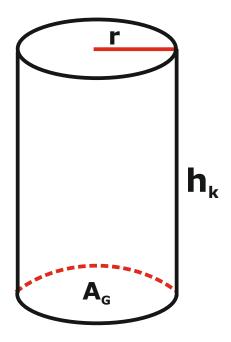
Volumen:


$$V = A_G \cdot h_k$$

Mantelfläche:

M= Summe der Seitenflächen

$$\mathbf{M} = \mathbf{u}_{\text{Grundfläche}} \cdot \mathbf{h}_{\mathbf{k}}$$

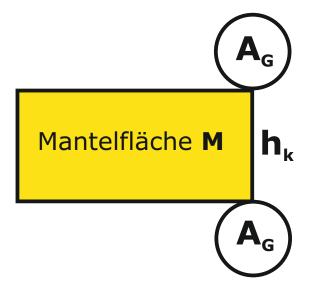


Zylinder

Volumen:

$$V = A_G \cdot h_k$$

$$V = r^2 \cdot \pi \cdot h_k$$

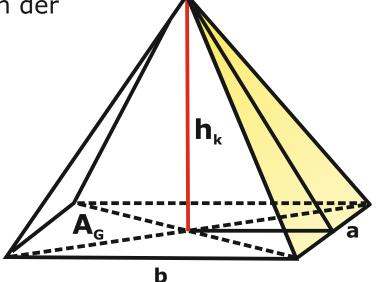

Mantelfläche:

$$\mathbf{M} = 2 \cdot \mathbf{r} \cdot \mathbf{\pi} \cdot \mathbf{h_k}$$

Oberfläche:

$$\mathbf{O} = 2 \cdot A_{\mathbf{G}} + M$$

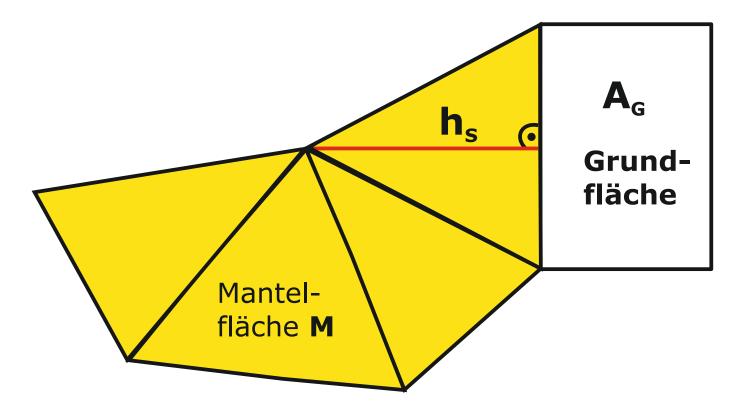
$$\mathbf{0} = 2 \cdot \mathbf{r}^2 \cdot \pi + 2 \cdot \mathbf{r} \cdot \pi \cdot \mathbf{h_k}$$


Pyramide

a, b: Kantenlängen der Grundfläche

h_k: Körperhöhe

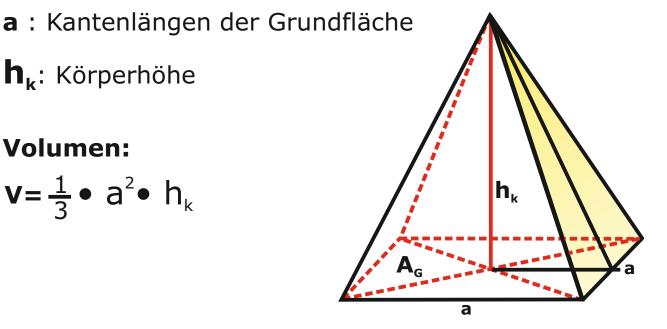
Volumen:


$$V = \frac{1}{3} \cdot A_G \cdot h_k$$

h_s: Höhe eines Seitendreiecks(wird auch als h_a, h_D bezeichnet)

Mantelfläche: M = Summe der Seitendreiecke Ap

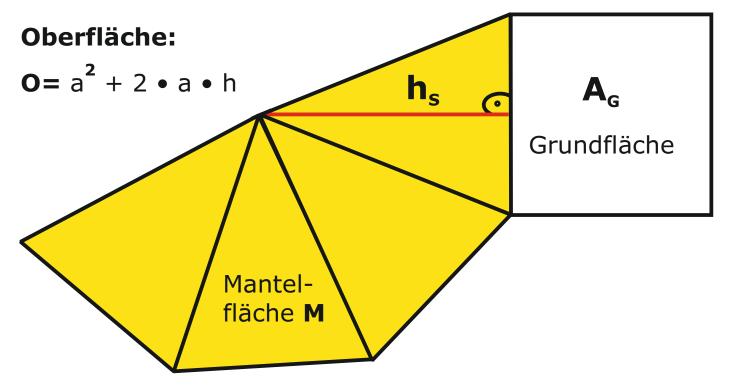
Oberfläche: $O = A_G + M$



Quadratische Pyramide

h_k: Körperhöhe

Volumen:


$$\mathbf{v} = \frac{1}{3} \bullet a^2 \bullet h_k$$

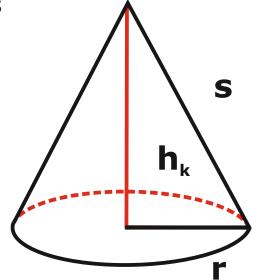
h_s: Höhe eines Seitendreiecks (wird auch als $\boldsymbol{h_a}$, $\boldsymbol{h_D}$ bezeichnet

Mantelfläche:

M=
$$4 \cdot \frac{1}{2} \cdot a \cdot h = 2 \cdot a \cdot h$$

Kegel

r: Radius des Kreiskegels

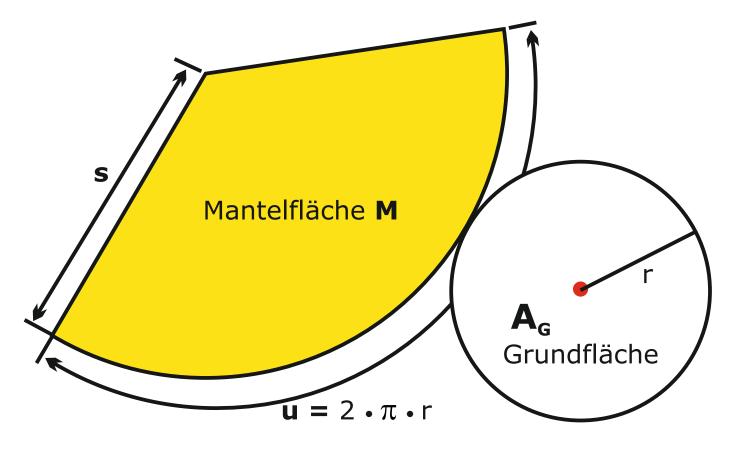

h_k: Körperhöhe

s: Seitenlinie

Volumen:

$$V = \frac{1}{3} \cdot A_G \cdot h_k$$

$$\mathbf{V} = \frac{1}{3} \cdot \mathbf{r}^2 \cdot \pi \cdot \mathbf{h_k}$$

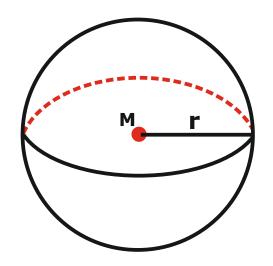


Seitenlinie: $\sqrt{r^2 \cdot h_k \cdot h_k}$

Mantelfläche: $M = r \cdot \pi \cdot s$

Oberfläche: $O = A_G + M$

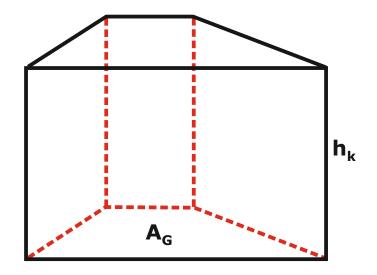
$$\mathbf{O} = \mathbf{r}^2 \bullet \pi + \mathbf{r} \bullet \pi \bullet \mathbf{s}$$


Kugel

Volumen einer Kugel:

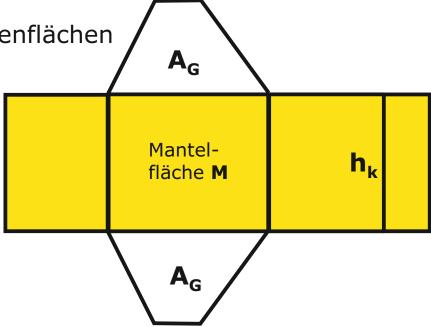
$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

Oberfläche einer Kugel:


$$\mathbf{O} = 4 \bullet \pi \bullet r^2$$

Trapezsäule

Volumen:


$$V = A_G \cdot h_k$$

Mantelfläche:

M= Summe der Seitenflächen

M= u_{Grundfläche}• h_k

Raummaße:

Kubik- meter	Kubik- Kubik- meter dezimeter	Kubik- Kubik- dezimeter zentimeter	Kubik- millimeter
1 m³ =	$=1000 dm^3$		
	1 dm³ <mark>=</mark>	$1 \text{ dm}^3 = 1000 \text{ cm}^3$	
		1 cm³ =	1 cm³ = 1000 mm³

 $1 \, dm^3 = 11$

Milliliter		= 1000 ml	10 ml
<u>_</u>		-	-
Zentiliter		cl	1 cl
Zen		= 100 cl	Ţ
		"	
7	1 (
Lite	=100	, ,	
Hekto- Liter liter			
Hekt liter	1 hl		

Massen:

Tonne	Kilogramm	Gramm	Milligramm
1 t	= 1000 kg		
	1 kg	= 1000 g	
		1g =	1g = 1000 mg

Zeitspannen:

Tag	Stunde	Minute	Sekunde
1 d =	24 h		
	1 h =	= 60 min	
		1 min =	= 60 s

Flächenmaße 1:

Quadratkilometer Hektar	Hektar	Ar	Quadratmeter
1 km²	≠ 100 ha	= 10000 a	
	1 ha =	= 100 a	= 10000 m²
		1 a	= 100 m²

Flächenmaße 2:

Quadratmeter	Quadratdezimeter	Quadratzentimeter Quadramillimeter	Quadramillimeter
1 m²	= 100 dm² ==	= 10000 cm ²	
	1 dm²	= 100 cm ²	= 10000 mm ²
		1 cm²	= 100 mm²

<u>Längen:</u>

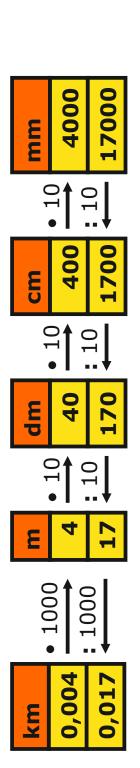
Kilometer	Meter	Dezimeter	Zentimeter	Millimeter
1 km	±1000 m			
	1 m	10 dm	± 100 cm	± 1000 mm
		1 dm	10 cm	= 100 mm
			1 cm	= 10 mm

Maßstab:

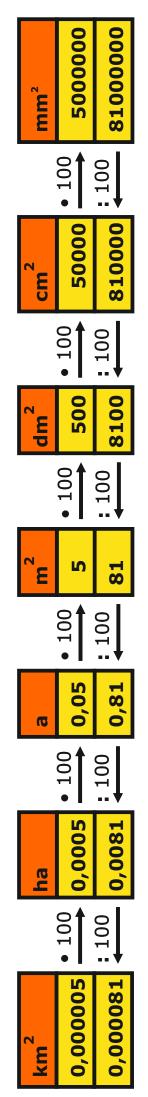
Auf Landkarten ist immer ein Maßstab angegeben.

1:800000 bedeutet:

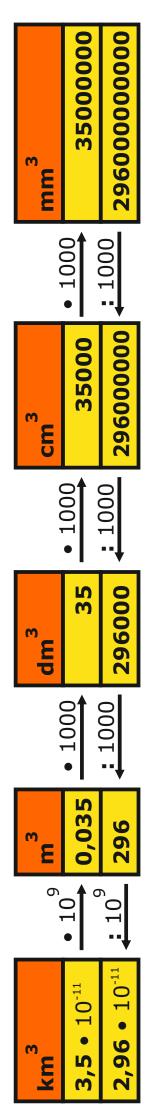
1 cm auf der Karte entsprechen 800000 cm in der Wirklichkeit.

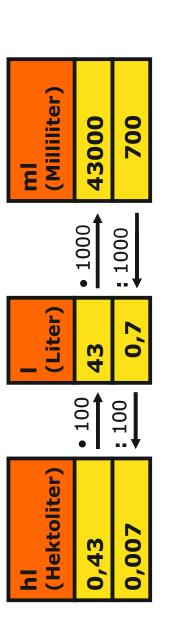

Karte: Wirklichkeit

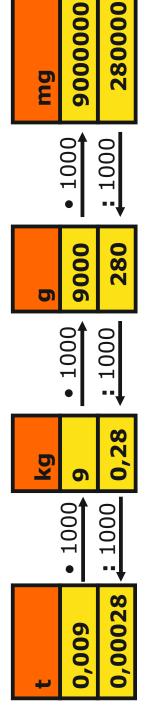
 $1 \text{ cm} \triangleq 800000 \text{ cm} = 8 \text{ km}$

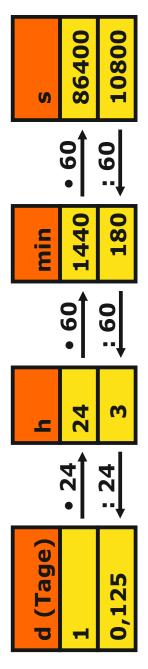

Auf einer Karte:
Maßstab
1:800000

Km


Längen:


Flächenmaße:


Raummaße:


Raummaße:

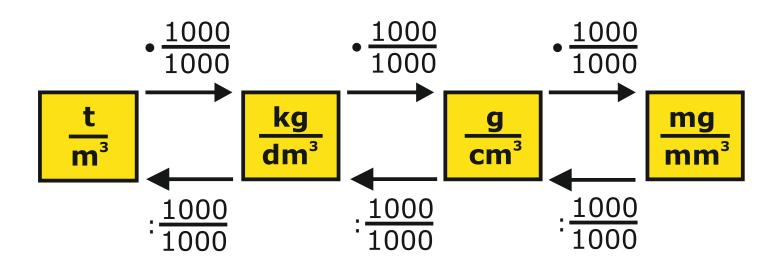
Massen:

Zeitspannen:

Dichte berechnen

Dichte berechnen:

Dividiert man die Masse (bzw. das Gewicht) eines Körpers durch sein Volumen,so erhält man die **Dichte**.


Fomeln:

Dichte =
$$\frac{\text{Masse}}{\text{Volumen}}$$

Masse = Dichte • Volumen

Volumen =
$$\frac{\text{Masse}}{\text{Dichte}}$$

Einheiten der Dichte:

